

AMAT100 PRECALCULUS

Exam 2A

Print Name:		
UAlbany Email:		

Directions: You have **80 minutes** to answer the following questions. **You must show all necessary work** as neatly and clearly as possible. Clearly indicate your final answers by placing a box or circle around it.

No calculators, notes, textbooks, mobile phones or other aids are allowed. Do not detach pages.

Problem	Possible	Points
1	9	
2	8	
3	8	
4	6	
5	9	
6	10	
7	6	
8**	4	
Total	56	

 $^{**{\}rm Optional}$ Extra Credit Problem

(Similar to	HW5	Questions	2-6)
-------------	-----	-----------	------

- (1) Let L(x) be a linear function where L(-2)=-3 and L(2)=3.
 - (a) (3 Points) The slope of the linear function L(x) is ______.

(b) (3 Points) The equation of the linear function is $L(x) = \underline{\hspace{1cm}}$

(c) (3 Points) Let P(x) be a linear function perpendicular to L(x) and passing through the point (1,0). The equation of this linear function is $P(x) = \underline{\hspace{1cm}}$.

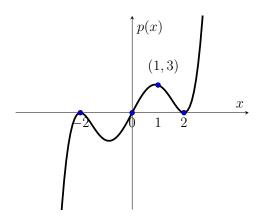
(Similar concepts to Practice Problems 8 and HW6 Questions 5-7)

(2) A UAlbany student, Mariah, is selling custom-designed phone cases in the campus center to raise money for their club. The profit, P(n), they make in dollars is modeled by the function:

$$P(n) = -0.5n^2 + 15n,$$

where n is the number of phone cases they sell in a day.

(a) (4 Points) The number of phone cases Mariah needs to sell to maximize profit is _____ phone cases.


(b) (4 Points) The maximum profit Mariah can make in a day is _____ dollars.

Problem 2 Continued

(c) (Optional Extra Credit Problem (4 Points)) Determine the number of phone cases Mariah needs to sell to make a profit of exactly \$100.

(Similar concepts to Practice Problem 9 Question 3)

(3) (8 Points) Find a possible formula for the polynomial graphed below.

AMAT100 PRECALCULUS

(Similar concepts to Practice Problems 10 Questions 1,2, Online HW 7 Questions 9, 10)

- (4) The graph of y = f(x) has
 - Vertical asymptotes at x = 3 and x = 5.
 - The x-intercept at (-5,0) and (-4,0).
 - A horizontal asymptote of $y = \frac{1}{3}$.
 - (6 Points) Find ONE possible formula for the rational function f.

(Similar to HW8 and Practice Problems 13)

(5) (a) (3 Points) Find the domain of $f(x) = \log(2 - 7x)$. Write your answer using interval notation.

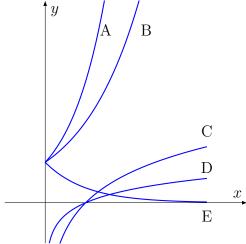
(b) (3 Points) The value of $\ln\left(\frac{1}{e^7}\right) =$ ______.

(c) (3 Points) The value of $100^{\log 5} =$

(Similar to HW8 Questions 5-9)

(6) (a) (5 Points) Expand the expression below as a sum or difference of logarithms with no exponents.

$$\log\left(\frac{a^{-3}b^5}{c^{-7}}\right)$$


(b) (5 Points) Solve for x:

$$3\log(2x+6) = 6$$

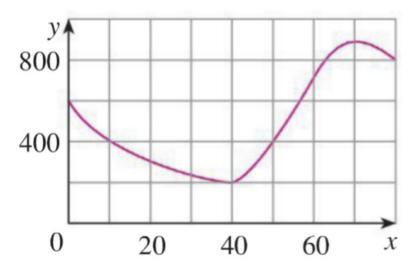
- (7) (Similar to Practice Problems 13, HW8)
 - (a) (6 Points) Solve for x:

$$11 \cdot 3^x = 5 \cdot 7^x$$

(b) (Optional Extra Credit Problem (4 Points)) Match the functions with with their graphs in the figure below.

 $y = 2^x$ is the graph labeled _____.

 $y = e^{-x}$ is the graph labeled _____.


 $y = 3^x$ is the graph labeled _____.

 $y = \ln(x)$ is the graph labeled _____.

 $y = \log(x)$ is the graph labeled _____.

(Optional Extra Credit Problem: 4 Points)

(8) Consider the graph of f(x) below.

Calculate the average rate of change of f(x) on the interval [10, 40].