Practice Assessment 19 Parametric Equations

Parametric Equations: If x and y are continuous functions of t on an interval I, then the equations

$$x = x(t)$$
 and $y = y(t)$, $t \in I$,

are called the **parametric equations** and t is call the **parameter**. The set of points (x, y) obtained as t varies over the interval I is called a **parametric curve** or plane curve, and is denoted by C.

1. Sketch the curves below by eliminating the parameter t and find an equation in xy-coordinates whose graph contains the given curve.

(a)
$$x(t) = t$$
, $y(t) = t + 6$

(b)
$$x(t) = t^2 + 2t$$
, $y(t) = t + 1$

(c)
$$x(t) = e^t$$
, $y(t) = e^{2t}$

(d)
$$x(t) = \sin(t), \quad y(t) = \cos^2(t)$$

2. (a) Find the parametric equations for the graph $y + \sqrt{x} = e^{2x}$.

(b) Find the parametric equations for the line containing the point $P_0 = (2,4)$ and with slope 3.

(c) Find parametric equations for the ellipse $\frac{x^2}{7} + \frac{y^2}{13} = 1$.

- 3. A particle moves in the plane so that at time t its position is given by x(t) = t + 4, $y(t) = 8 t^2$. A second particle moves in the plane so that at time t its position is given by x(t) = t + 4, y(t) = t + 6.
 - (a) Find equations in xy-coordinates for each of the curves.

(b) Do the paths of the particles cross? If so, where?

(c) Do the particles collide? If so, where and at what time?