Practice Assessment 16 Power Series and Functions

A **power series** centered at the x=a is an expression of the form

$$\sum_{k=0}^{\infty} c_k (x-a)^k = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \dots$$

where the coefficients c_0, c_1, c_2, \ldots are constants and x is regarded as the independent variable.

1. Find the interval of convergence of the given power series.

(a)
$$\sum_{k=0}^{\infty} \frac{x^k}{k+2}$$

(b) $\sum_{k=2}^{\infty} \frac{x^k}{\ln(k)}$

(c)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k!} (x-3)^k$$

(d)
$$\sum_{k=1}^{\infty} \frac{k(x-2)^k}{e^k}$$

(e)
$$\sum_{k=2}^{\infty} \frac{(k(7x+1)^k)}{2^k}$$

2. Given that

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
, , for $x \in (-1,1)$.

Find the power series for each function centered at a=0 and state its radius of convergence.

(a)
$$f(x) = \frac{1}{1 - 2x}$$

(b)
$$f(x) = \frac{1}{1 + 4x^2}$$

(c)
$$f(x) = \frac{x}{1+x^2}$$

(d)
$$f(x) = \frac{x-1}{x+1}$$