

AMAT100 PRECALCULUS

Exam 3A

Fall 2024

Print Name:		
UAlbany Email:		

Directions: You have **80 minutes** to answer the following questions. **You must show all necessary work** as neatly and clearly as possible. Clearly indicate your final answers by placing a box or circle around it.

No calculators, notes, textbooks, mobile phones or other aids are allowed. Do not detach pages.

Problem	Possible	Points
1	12	
2	12	
3	12	
4	12	
5**	5	
Total	48	

^{**}Optional Extra Credit Problems

(Similar to HW10 and Practice Problems 12) (3 Points Each)

(1) (a) Find the domain of $f(x) = \log(3x - 16)$. Write your answer using interval notation.

(b) The value of $\log_3(9) =$ ______.

(c) The value of $\ln\left(\frac{1}{e^5}\right) =$ ______.

(d) The value of $1000^{\log 2} =$

(Logarithmic Properties)

(2) (a) (6 Points) Write the expression below as a sum or difference of logarithms with no exponents. Simplify your answer completely.

$$\log\left(\frac{x^{1/3}y^{-2}}{z^5}\right)$$

(b) (6 Points) Write the expression below as a **single** logarithm.

$$2\log_3(x+7) + \log_3(x-5) - 3\log_3(x+1)$$

- (3) (Similar to Practice Assessment 13, HW11)
 - (a) (6 Points) Solve for x:

$$3^{x-1} = \left(\frac{1}{27}\right)^{2-x}$$

(b) (6 Points) Solve for x:

$$\log_{12}(x-1) + \log_{12}(x+3) = 1$$

(Similar to Practice Assessment 14)

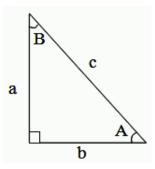
(4) A person's blood pressure, P (in millimeters of mercury) is given by

$$P(t) = 100 - 20\cos\left(\frac{\pi}{3}t\right),\,$$

where t is the time in seconds. You do not need to show work.

- (a) (2 Points Each) Fill in the blanks. State the period, amplitude, and midline of the function P.
 - (i) The period of P(t) is _____.

(ii) The amplitude of P(t) is _____.


(iii) The equation of the midline of P(t) is ______.

- (b) (3 Points Each)
 - (i) What is the maximum value of P(t)?

(ii) What is the value of P(1)?

(Similar to Quiz: Trigonometric Functions of Angles)

- (5) (Optional: Extra Credit) (0.5 Point Each) Fill in the blanks.
 - (a) If $\cos(\theta) = \frac{3}{8}$ and θ is in the 4th quadrant, then the exact value of
 - (i) $\sin(\theta) = \underline{\hspace{1cm}}$
 - (ii) $tan(\theta) = \underline{\hspace{1cm}}$
 - (iii) $sec(\theta) = \underline{\hspace{1cm}}$.
 - (iv) $\csc(\theta) = \underline{\hspace{1cm}}$.
 - $(v) \cot(\theta) = \underline{\hspace{1cm}}.$
 - (b) If $\theta = \frac{7\pi}{6}$, then
 - (i) $\sin(\theta) = \underline{\hspace{1cm}}$
 - (ii) $\cos(\theta) = \underline{\hspace{1cm}}$.
 - (c) Consider the triangle below (Triangle not drawn to scale). Suppose a=5 and b=7. Find the exact values for each of the trig functions below.

- $(i) \sin(A) = \underline{\hspace{1cm}},$
- $(ii) \cos(A) = \underline{\hspace{1cm}},$
- (iii) $tan(A) = \underline{\hspace{1cm}}$.