Practice Assessment Approximating Areas

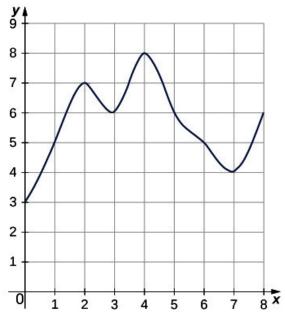
These practice problems are designed to help you prepare for our course exams and assess your understanding of the course material at the expected level. Aim to complete them in class, during tutoring, office hours, or on your own, and try to solve them without notes or a calculator, just like on the actual exams. Remember, practice makes perfect, so don't hesitate to ask for help if you get stuck.

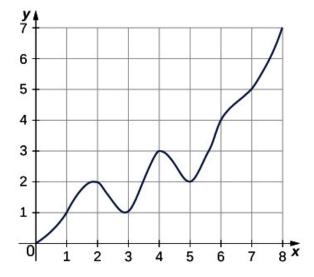
Two useful formulas for finite sums are:

•
$$\sum_{j=1}^{n} j = 1 + 2 + 3 + \ldots + n = \frac{n+1}{n}$$

•
$$\sum_{j=1}^{n} j^2 = 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

1. Compute the indicated sum.


(a)
$$\sum_{j=1}^{6} (3j+2)$$


(b)
$$\sum_{j=1}^{7} (j-5)$$

(c)
$$\sum_{j=1}^{5} (j^2 - 4j + 1)$$

(d)
$$\sum_{j=1}^{5} (2j-5)^2$$

2. By reading values from each of the given graphs below, estimate the area under curve by computing the left and right Riemann sums, L_8 and R_8 , respectively.

3. (a) Compute the left and right Riemann sums using 4 subintervals, L_4 and R_4 , for the function $f(x)=2x^2+3$ on [0,4]

(b) Compute the left and right Riemann sums using 6 subintervals, L_4 and R_4 , for the function f(x) = 6 - x on [0, 3]

- 4. Let f(x) = 3x + 2.
 - (a) Find the left Riemann sum, L_4 for f(x) on [0,2] with n=4 subintervals.

(b) Find an expression for the left Riemann sum, L_n for f(x) on [0,2] with n subintervals.

(c) Find $\lim_{n\to\infty} L_n$ with L_n obtained from part (b).

(d) Find an expression for the right Riemann sum, R_n for f(x) on [0,2] with n subintervals.

(e) Find $\lim_{n\to\infty} R_n$ with R_n obtained from part (d).

(f) What can you conclude about the area bounded by the graph of y = f(x), the x-axis, the line x = 0 and the line x = 2.