AMAT112: Calculus I

The Mean Value Theorem

1. For each of the following functions, find all numbers c that satisfy the conclusion of the Mean Value Theorem on the indicated interval.

a)
$$p(x) = 3x^2 - 4x + 7$$
, $-2 \le x \le 5$

b)
$$v(t) = -3t^3 + 6t^2 - 7t + 1$$
, $-5 \le t \le 1$

c)
$$g(z) = \frac{4z+1}{2-z}, \quad -2 \le z \le 1$$

d)
$$h(y) = \ln(y^2 + 1), \quad -2 \le y \le \frac{1}{2}$$

2. Show that each of the following functions has exactly one root.

a)
$$p(x) = x^5 + x^3 - 7$$

b)
$$f(\theta) = 2x + \cos(x)$$
 c) $g(t) = t^3 + e^t$

c)
$$g(t) = t^3 + e^{t}$$

- 3. Show that, for any real number c, the equation $x^4 + 4x + c = 0$ has at most two real roots.
- 4. Suppose that f(5) = 3 and $4 \le f'(x) \le 20$ for $5 \le x \le 8$. What is the smallest f(8) can be?
- 5. Suppose that f(-18) = 11 and $3 \le f'(x) \le 14$ for $-27 \le x \le -18$. What is the largest f(-27) can be?
- 6. Suppose that $-2 \le f'(x) \le 1$ for all x. Show that $-18 \le f(4) f(-5) \le 9$.
- 7. Does there exist a function f such that f(1) = 2, f(5) = -15 and $f'(x) \ge -3$ for all x?