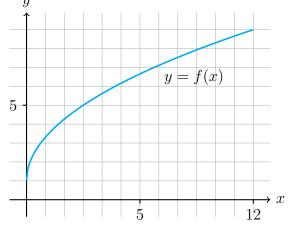

AMAT112: Calculus I


Area and the Definite Integral

1. By reading values from the given graph of f, use five rectangles to find a lower and an upper estimate for the area under the given graph of f from x = 0 to x = 10.

- 2. a) Use six rectangles to find estimates of each type for the area under the graph of f from x = 0 to x = 12.
 - (i) L_6 (left endpoints)
 - (i) R_6 (right endpoints)
 - (i) M_6 (midpoints)
 - b) Is L_6 an underestimate or overestimate of the true area?

- d) Which of the numbers L_6 , R_6 or M_6 gives the best estimate of the true area? Explain.
- 3. You and a companion are about the drive a twisty stretch of dirt road in a car whose speedometer works but whose odometer is broken. To find out how long this particular stretch of road is, you record the car's velocity at 10-second intervals, with the results shown in the table below.

Time (s)	0	10	20	30	40	50	60	70	80	90	100	110	120
Velocity (ft/s)	0	44	15	35	30	44	35	15	22	35	44	30	35

Estimate the length of the road using

a) left-endpoints.

b) right-endpoints.

4. You are sitting on the bank of a tidal river watching the incoming tide carry a bottle upstream. You record the velocity of the flow every 5 minutes for an hour, with the results shown in the table below.

About how far upstream did the bottle travel during that hour? Find an estimate using

a) left-endpoints.

- b) right-endpoints.
- 5. For each of the following functions, evaluate the Riemann sum using 6 subintervals and each type of sample point.
 - (i) L_6 (left endpoints)
- (ii) R_6 (right endpoints)
- (iii) M_6 (midpoints)

- a) $y = x^3$, between x = 0 and x = 1.
- b) $y = \frac{1}{x}$, between x = 1 and x = 7.
- c) $y = 4 x^2$, between x = -3 and x = 3 d) $y = \sin(x)$, between x = 0 and $x = \pi$,

6. Suppose

$$\int_{1}^{2} f(x) dx = -4, \quad \int_{1}^{5} f(x) dx = 3, \quad \int_{1}^{5} g(x) = 6.$$

Compute the following.

a)
$$\int_{2}^{2} g(x) \, dx$$

b)
$$\int_{5}^{1} g(x) dx$$

c)
$$\int_{1}^{2} 3f(x) \, dx$$

d)
$$\int_{2}^{5} f(x) dx$$

e)
$$\int_{1}^{5} f(x) - g(x) dx$$

f)
$$\int_{1}^{5} 4f(x) - g(x) dx$$

7. Evaluate the following integrals by interpreting them as areas.

a)
$$\int_{-1}^{2} 1 - x \, dx$$

b)
$$\int_0^9 \frac{1}{3}x - 2 \, dx$$

c)
$$\int_{0}^{0} 1 + \sqrt{9 - x^2} \, dx$$

d)
$$\int_{-5}^{5} x - \sqrt{25 - x^2} \, dx$$

e)
$$\int_{-1}^{2} |x| dx$$

2

f)
$$\int_0^{10} |x - 5| \ dx$$